
OCA ALLIANCE

What's New in AES70

Changes in AES70 for 2018

OCA ALLIANCE

Background

• AES70 is the AES standard for device control.

• Publication history

• Recommended specification developed by the OCA Alliance 2011-2014

• Specification passed to AES for standardization; AES70-2015 published in
January of 2015

• AES70-2015 is substantially complete, but requires a few improvements.

• Improvements were drafted by the OCA Alliance in 2017 and 2018, and passed to
the AES as recommended revisions to AES70-2015.

• The revisions are now approved internally by AES and are currently in a six-week
public comment period that ends on November 9.

• After all comments (if any) have been integrated, AES70-2018 will
become an official standard.

OCA ALLIANCE

Process

• AES70-2018 is not a major upgrade to AES70-2015, but it does contain
several important changes.

• Most of the changes have been developed in response to the experiences of
early adopters of AES70-2015.

• For AES70-2018, the version numbers of all AES70-2018 control classes have
been incremented. This will allow controllers to distinguish between AES70-
2015 and AES70-2018 implementations.

OCA ALLIANCE

Quick List

1. Connection Management, version 3 (CM3)

2. Improved support for clocking and time

3. WebSocket and UDP Protocol support

4. Improved object search features

5. Upgraded ClassID format to support proprietary classes more completely

6. Reusable blocks

7. Better support for proprietary volume types in OcaLibrary

8. Support for nonexclusive locking of objects

9. The OcaPhysicalPosition class

10.New Task mechanism

OCA ALLIANCE

1 Connection Management v3 ("CM3")

• “Connection management” means setting up, configuring, controlling,
monitoring, and taking down media stream connections between
devices.

• The new connection management scheme of AES70-2018 is called
“Connection Management 3” or CM3.

• The scheme in AES70-2015 is Connection Management 2 (CM2).

• CM1 was a developmental scheme that was never standardized.

• In comparison to CM2, CM3 has lower storage requirements, better
management of connection parameters, much better management of
clocking, better and more flexible codec support, and is generally easier
to implement in both devices and controllers.

• AES70-2018 still includes the specification of CM2, although CM2 classes
are now deprecated. AES70-2018-compliant devices can support
coexisting CM2 and CM3 implementations with no conflicts.

OCA ALLIANCE

2 Improved support for clocking and time

• The new classes OcaTimeSource and OcaMediaClock3 provide improved
ways of describing and controlling external time references and media
clocks.

OCA ALLIANCE

3 WebSocket and UDP protocol support

• AES70-2018 will run over WebSocket and UDP links, as well as the TCP links
used heretofore. Features and restrictions of these new link types are as
follows:

• Encryption and authentication are supported only over TCP links, not
WebSocket or UDP links.

• WebSocket and UDP versions use the same protocol data unit formats as
the TCP version.

• WebSocket implementations need implement only a few webserver
functions, not entire webservers.

• UDP links are for small, noncritical applications on single IP subnets.
The UDP version uses fewer device resources, but is inherently less
reliable.

• For UDP functions, the rules for supervision (“keepalive”)
functions are a little different from the other versions.

OCA ALLIANCE

4 Improved object search features

• AES70-2018 includes features to help controllers locate objects by their
Role properties.

• Role is a property of every AES70 object. It is designed to be a text
description of the object’s function in the device.

• Role is analogous to the text printed adjacent to a control knob, button, or
indicator on the front-panel of a conventional manually-controlled device.

• Roles are fixed at object creation time, which means for most devices they
will be set a time of manufacture.

• Using Roles to find objects means that controllers will not need to have
prior knowledge of a device’s set of object numbers, but instead can
discover the object numbers at runtime by searching for the objects
desired. This improves interoperability and makes object number
management simpler.

OCA ALLIANCE

4 Improved object search features, continued

• The new Role features in AES70-2018 are:

• Method GetPath(...) in class OcaWorker and class OcaAgent.

• These methods return the Rolepath of an object. The Rolepath is the
ordered list of the Roles of all an object’s nested containing OcaBlocks
followed by the Role of the object itself.

• The following methods in class OcaBlock:

FindObjectsByRole(...)

FindObjectsByRoleRecursive(...)

FindObjectsByPath(...)

FindObjectsByLabelRecursive(...)

• These methods find objects within blocks based on various search criteria.

OCA ALLIANCE

5 Upgraded ClassID format

• Format of the ClassID has been revised (compatibly) to do a better job of
supporting proprietary classes (i.e., classes manufacturers add to the
standard class tree for special purposes).

• The previous scheme, in AES70-2015, allowed proprietary ClassID values,
but did not prevent clashes if proprietary classes from two different sources
were combined in one device.

• The new scheme includes a unique company ID (an IEEE OUI or CID) in
proprietary ClassID values, and therefore allows free mixing of such classes
with no conflicts.

• The new ClassID scheme is upwards-compatible with the AES70-2015
scheme, except that the class index value 65,535 = FFFF16 is now reserved.

OCA ALLIANCE

6 Reusable OcaBlocks

• A manufacturer or other design source may now assign unique identifiers
(global block identifier) to specific OcaBlock configurations. An OcaBlock
so identified is termed a reusable block. Reusable blocks may be
instantiated in multiple products, where controllers will recognize them by
their global block identifiers, and invoke corresponding common controller
codes.

• It is anticipated that companies using AES70 will develop libraries of
reusable block specifications for deployment across their product lines.
Global block identifiers include unique company identifiers (IEEE OUI or
CID), which ensures that companies can allocate identifier values without
fear of clashing with others.

OCA ALLIANCE

7 Better support for proprietary volume types in OcaLibrary

• The agent object OcaLibrary is designed to store large binary
objects(“volumes”) of various types, including both standard types and
proprietary types.

• Each volume type is identified by a unique code named OcaLibVolType.

• Under AES70-2015, it was possible for proprietary OcaLibVolType values to
clash with proprietary libraries from multiple companies in the same device.

• In AES70-2018, the structure of OcaLibVolType now includes an IEEE OUI or
CID value that uniquely identifies the source. Clashes are now impossible.

• For standard (i.e. non-proprietary) OcaLibVolType values, AES70-2015 and
AES70-2018 are the same.

• If proprietary classes are used, the AES70-2018 scheme is incompatible with the
AES70-2015 scheme.

OCA ALLIANCE

8 Support for nonexclusive locking of objects

• AES70-2018 now supports an object locking option that allows read-only
access to locked objects.

• Previously, AES70-2015 supported only exclusive locking, in which properties
of locked objects could be neither retrieved nor changed by controllers
other than the lock holder.

• AES70-2018 now supports two locking options: LockTotal, which is identical
to the exclusive lock defined in AES70-2015, and LockReadonly, which
prevents change of locked objects, but allows retrieval of their properties’
values.

• This change is implemented compatibly. When an AES70-2015-compliant
controller locks an AES70-2018 device via the Lock() method that is defined
in AES70-2015, the resulting lock state is LockTotal, i.e. exclusive
lock.

OCA ALLIANCE

9 The OcaPhysicalPosition class

• The new OcaPhysicalPosition class defines an agent that can report and,
depending on implementation, change a physical position.

• This class has several expected usecases, including:

1. Reporting physical position of active loudspeakers and microphones
that can sense their locations and orientations;

2. Allowing manipulation of object-based audio program entities;

3. Controlling position and/or orientation of automated mechanical
devices;

4. Supporting geographically-aware devices.

• To support these and other purposes, OcaPhysicalPosition has options for
working in three kinds of coordinate systems: (a) six-axis robotic
coordinates; (b) object-based audio coordinates of several types;
and (c) world geographic coordinates such as are used in GPS.

OCA ALLIANCE

10 The AES70 Task mechanism

• AES70-2018 defines a new architectural concept called the AES70 Task
mechanism. This mechanism allows management and control of transient
processes within a device. Examples of such processes include:

• Execution of predefined, prepackaged real-time actions. Such
sequences are called presets, cues, or edits in other contexts.

• Execution of actions that have been scheduled sometime in the past.

• Execution of timed control operations such as fades, crossfades, timed
pans, and other segues.

• Execution of predefined system configuration changes.

• Execution of emergency procedures.

• Media playback.

• Execution of mechanical operations.

OCA ALLIANCE

10 The AES70 Task mechanism

• The Task mechanism is based on two concepts:

1. The Program, a predefined entity that defines action(s) to be performed;

2. The Task, a container that executes the program.

• In AES70-2018, Programs are stored as OcaLibrary volumes whose
OcaLibVolType is Program, and Tasks are defined in data structures collected
by a new Manager class, OcaTaskManager.

• OcaTaskManager provides methods for defining Tasks, for assigning Programs
to them, and for starting, stopping, and monitoring them.

• AES70-2018 does not define a method for encoding the specific actions of
Programs - conditions tested, steps executed, notifications generated, et
cetera.

